ТЕКСТЫ ОЛИМПИАДНЫХ ЗАДАНИЙ РЕГИОНАЛЬНОГО ЭТАПА ВСЕРОССИЙСКОЙ ОЛИМПИАДЫ ШКОЛЬНИКОВ ПО ХИМИИ

(для участников)

1 тур

Оглавление

Пояснительная записка	3
Девятый класс	4
Задача 9-1	
Задача 9-2	
Задача 9-3	
Задача 9-4	
Задача 9-5	
Десятый класс	9
Задача 10-1	
Задача 10-2	
Задача 10-3	
Задача 10-4	
Задача 10-5	
Одиннадцатый класс	16
Задача 11-1	
Задача 11-2	
Задача 11-3	
Задача 11-4	
Задача 11-5	

Пояснительная записка

Региональный этап Олимпиады по химии проводится в 2 тура. Для трех возрастных параллелей: 9-х, 10-х и 11-х классов подготовлены отдельные комплекты заданий теоретического и практического туров. В комплект заданий каждой возрастной параллели для теоретического тура входит 5 задач из различных разделов химии. Распределение тематики задач в первом туре по классам представлено в таблице:

Задача Класс	1	2	3	4	5		
9	Неорганическая химия				Физическая химия		
10	Неорганическая химия Орг. химия			Физическая химия			
11	Неорг.	химия	Органическая химия		Физическая химия		

При подсчете рейтинга участников в суммарном балле за теоретический тур учитываются баллы всех задач. Максимальный балл за теоретический тур составляет 100 баллов

Длительность тура составляет 5 (пять) астрономических часов.

Девятый класс

Задача 9-1

Химия неизвестного элемента

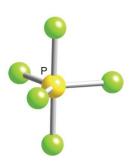
Вопросы:

- 1) Определите элемент X и неизвестные вещества X_1 , X_2 , X_3 , X_4 , Y, состав вещества X_3 подтвердите расчетом.
- 2) Запишите уравнения реакций.
- 3) Какое применение находит вещество X_3 в промышленности?

Задача 9-2

Чисто там, где убирают

Убираясь после проведения лабораторной работы на уроке химии, лаборант обнаружил две пробирки с малиновыми растворами. При добавлении серной кислоты *раствор 1* не изменил окраски, а *раствор 2* обесцветился. При добавлении к исходным растворам горячего водного раствора сульфата аммония в *растворе 1* наблюдалось выделение газа без запаха и выпадение


коричневого осадка, а в *растворе 2* чувствовался запах аммиака, появление осадка не наблюдалось. Оба раствора окрашивают пламя в фиолетовый цвет. При сливании *растворов 1* и *2* при комнатной температуре никаких мгновенных видимых изменений не наблюдалось.

Вопросы:

- **1.** Определите какие вещества содержаться в *растворах 1* и 2.
- **2.** Запишите уравнения реакций, протекающих при добавлении к *раствору 1*
 - а) раствора иодида калия, подкисленного серной кислотой,
 - b) сернистого газа,
 - с) горячего водного раствора аммиака.
- **3.** Запишите уравнение реакции, происходящий при взаимодействии алюминия с избытком *раствора 2*.
- **4.** Какие изменения могут произойти со временем в растворе, полученном смешением *растворов* 1 и 2? Запишите уравнение реакции.
- **5.** Какое применение находят вещества, окрашивающие *растворы 1* и 2?

<u>Задача 9-3</u>

Фосфор при взаимодействии с избытком газа $\bf A$ образует твёрдое вещество $\bf F$ ($\it p$ - $\it q$ u $\it s$ $\it I$). Которое состоит из ионов $\bf X^+$ и $\bf Y^-$, образованных из одних и тех же двух элементов. При нагревании $\bf F$ плавится, причём расплав состоит из молекул, имеющих форму тригональной бипирамиды (см. рис.). Нагревание выше точки кипения приводит к частичному обратимому разложению $\bf F$

Молекула Б

на газообразные вещества \mathbf{A} и \mathbf{B} (*p-ция* 2). Причем плотность газа \mathbf{b} в 2.94 раза выше, чем \mathbf{A} при одинаковых условиях.

1. Определите формулы веществ **A**, **Б** и **B**. Запишите уравнения реакций получения и разложения **Б**.

- **2**. Из каких ионов X^+ и Y^- состоит **A** в твердом состоянии?
- 3. Рассчитайте степень разложения \mathbf{F} при 250 °C (то есть долю \mathbf{F} , которая разложилась) и состав смеси \mathbf{A} , \mathbf{F} и \mathbf{B} (в мольных %), если плотность газообразной смеси, полученной из \mathbf{F} нагреванием до этой температуры, по \mathbf{A} равна 1.65.

И **Б**, и **В** бурно реагируют с водой (*p-ции* **3** и **4**) с образованием растворов, содержащих сильную кислоту Γ и кислоты \mathcal{L} (в случае \mathcal{L}) и \mathcal{L} (в случае \mathcal{L}). При пропускании газа \mathcal{L} через раствор \mathcal{L} образуются Γ и \mathcal{L} (*p-ция* **5**). При длительном контакте \mathcal{L} с влажным воздухом образуется жидкое вещество \mathcal{L} молекулярного строения (*p-ция* **6**), которое в промышленности получается взаимодействием \mathcal{L} с простым газообразным веществом \mathcal{L} (*p-ция* **7**). Молекулы \mathcal{L} имеют такую же геометрическую форму, как и ион \mathcal{L}

4. О каких веществах $\Gamma - 3$ идет речь? Определите их формулы и запишите уравнения пяти описанных реакций.

Более сложными методами можно получить твердое вещество \mathbf{G}' , состоящее из катионов \mathbf{X}^+ и анионов \mathbf{Y}^- и \mathbf{Z}^- в мольном отношении \mathbf{Y}^- : \mathbf{Z}^- .= 1 : 1 Известно, что один из них образуется при растворении \mathbf{G} в воде.

5. Определите оставшийся ион \mathbf{Z}^- . Запишите формулу \mathbf{b}' в виде совокупности ионов, учитывая, что количества анионов в составе \mathbf{b}' равны.

Задача 9-4

«Точно так же»

Неорганическое вещество **X** получают в лаборатории пропусканием хлора в горячий раствор гидроксида калия (*р-ция 1*). Выпадающие кристаллы кислородсодержащей соли **X** отфильтровывают и подвергают перекристаллизации. Растворимость **X** при 0 °C составляет 3.3 г соли на 100 г воды, а при 100 °C 56.2 г на 100 г воды.

С очищенной перекристаллизацией солью **Х** провели 4 опыта:

- А) **Х** нагрели с диоксидом марганца в присутствии твердого гидроксида калия (*p-ция* 2), продукты реакции растворились в воде без остатка с образованием темно-зеленого раствора, со временем изменяющего окраску с выпадением коричневого осадка (*p-ция* 3).
- Б) Нагревание **X** с диоксидом марганца без щелочи (*p-ция 4*) приводит к остатку, частично растворимому в воде, образующийся раствор не окрашен и со временем никаких изменений с ним не происходит. Если к твердому остатку разложения прибавить концентрированную серную кислоту выделяется газ желто-зеленого цвета (*p-ция 5*).
- В) Если к X прибавить концентрированную серную кислоту выделятся другой газ желтого цвета (*p-ция 6*), реагирующий с горячим раствором гидроксида калия (*p-ция 7*) с образованием бесцветного раствора.
- Γ) Взаимодействие **X** с красным фосфором сопровождается взрывом, при этом образуется белый твердый остаток (*p-ция* 8), растворимый в воде.

Водный раствор щелочи **A** массой 70.4 г нагревали со стехиометрическим количеством галогена **B** (*p*-*ция 9*), в полученном растворе массовые доли солей равны 26.31 % и 8.165 %.

Вопросы:

- 1. Напишите уравнения реакций 1-9. Укажите тривиальное название X.
- **2**. Какую окраску приобретает раствор по окончанию *р-ции 3*? Где в быту используется *р-ция 8*?
- 3. Определите минимальную массу воды m_1 в которой растворится 15 г соли **X** при 100 °C. Рассчитайте сколько граммов безводной соли m_2 можно получить из 58 г насыщенного при 100 °C раствора при его охлаждении до 0 °C.
 - 4. Определите вещества A, B и массовую долю ω щелочи в растворе A.

Задача 9-5

Термохимия и взаимные превращения атмосферных газов

Газы **X** и **Y** в очень незначительных количествах присутствуют в атмосфере Земли. Содержание **X** равно $5.0 \cdot 10^{-5}$ % по объёму и $3.5 \cdot 10^{-6}$ % по массе, для **Y** значения этих же величин составляют $3.0 \cdot 10^{-5}$ % и $5.0 \cdot 10^{-5}$ % соответственно.

1. Определите неизвестные вещества Х и У. Ответ подтвердите расчётом.

Некоторые термохимические характеристики данных веществ приведены в таблице:

Вещество	X	Y
Теплота образования, ^{кДж} / _{моль}	0	-142
Теплота сгорания с образованием газообразных продуктов, ^{кДж} / _{моль}	242	_
Энергия, необходимая для диссоциации на атомы, кДж/моль	436	605

Газ Y может быть получен из вещества Z (*p-ция* 1), молекула которого содержит два атома. Z легко взаимодействует с X с образованием соединения N (*p-ция* 2). Вещества N и Z также содержатся в атмосфере Земли.

- **2.** Запишите <u>термохимические</u> уравнения *р-ций* **1** и **2**.
- 3. Рассчитайте энергию связи в молекуле Z.
- **4.** Рассчитайте энергию каждой связи в молекуле **N**.

Одним из лабораторных способов получения **Z** является разложение вещества **M**, состоящего из тех же элементов, что и **N** (*реакция 3*).

5. Запишите уравнение *реакции 3*.

Учёными достаточно давно высказывались предположения о существовании изомера $\mathbf{Y} - \mathbf{Y}^*$. В 1998 году удалось зафиксировать \mathbf{Y}^* на поверхности оксида магния.

6. Изобразите структурные формулы Y и Y*.

Указание: Термохимическим уравнением называется запись уравнения химической реакции с указанием агрегатного состояния веществ и теплового эффекта реакции.

Десятый класс

Задача 10-1

Два жидких при 25 °C бинарных вещества **A** и **Б** с одинаковым качественным составом смешиваются друг с другом в любых соотношениях. Жидкость **Б** крайне трудно получить в чистом виде, в отличие от **A**, которую сравнительно легко очищают дистилляцией. Оба вещества кристаллизуются практически при одной температуре (разница менее 1 °C), причем кристаллическая упаковка в обоих случаях образуется за счет сильных водородных связей. В кристалле молекулы **Б** хиральны¹.

При действии гидроксида бария на раствор $\bf { 600 }$ в $\bf { A}$ выпадает осадок $\bf { B}$, который при нагревании на воздухе до 600 °C разлагается в несколько стадий, теряет в сумме 51 % от исходной массы.

- **1.** Определите вещества **A** и **Б**. Схематично изобразите строение молекулы **Б** в кристалле. Укажите примерные значения валентных и двугранных углов в молекуле **Б** (< 90, = 90, > 90 но < 180, либо = 180). Почему молекула **Б** хиральна только в кристалле?
- **2.** Какая примесь практически всегда есть в **Б**? Как она образуется? Приведите уравнение реакции.
- **3.** Какое максимальное число водородных связей может образовать каждая из молекул **A** и **Б**? Сколько водородных связей образуют молекулы **A** и **Б** в кристаллах индивидуальных веществ?
- **4.** Сравните (>, <, =) кислотные, окислительные и восстановительные свойства жидкостей **A** и **Б**. Ответ подтвердите уравнениями реакций.
- **5.** Установите состав осадка ${\bf B}$, ответ подтвердите расчетом. Запишите уравнение реакции разложения ${\bf B}$.

отражением друг друга.

.

¹ Хиральность – это свойство молекулы не совмещаться в пространстве со своим зеркальным отражением при поворотах. Например, левую и правую человеческие руки легко можно отличить, т. к. они неодинаковы, хотя и являются зеркальным

Задача 10-2

«Такие одинаковые газы»

Бесцветные газы **A**, **B** и **C** имеют одинаковые плотности при н.у. При взаимодействии **A** с **B** при нагревании образуется **C**, простое газообразное вещество **D** и вода (p-uия 1). При конверсии газа **A** с водяным паром над никелевым катализатором образуется бесцветный ядовитый газ **E** и водород (p-u0. Относительная плотность смеси продуктов данной реакции по водороду составляет 4.90.

Известно, что плотность любой смеси газов **D** и **E** не зависит от соотношения компонентов. Если же к такой смеси добавить бесцветный газ **F**, то её плотность также не изменится. **F** можно получить при каталитическом крекинге газа **A** (*p-ция 3*), образующаяся при этом смесь продуктов имеет плотность $0.888 \, \text{г/л}$ при $25 \, ^{\circ}\text{C}$ и $1 \, \text{бар}$.

- **1.** Определите формулы веществ A F, ответ подтвердите расчётом.
- **2.** Напишите уравнения *реакций* 1 3.
- **3.** С каким из газообразных веществ **A,** С **F** реагирует газ **B** с образованием смеси газообразных продуктов той же плотности, что и у исходной смеси реагирующих веществ? Напишите уравнение реакции (p-u). Ответ обоснуйте.

Газ **G** самовоспламеняется на воздухе. Газы **D** и **G** имеют близкое значение молярной массы (в пределах 2 %). **G** в одном и том же мольном соотношении реагирует с газами **B** (p-u) и **F** (p-u), а при взаимодействии с **E** даёт аддукт **H** (p-u).

Вещество **H** растворяется в щелочах с образованием соли, содержащей анион **I** с массовой долей кислорода 55.32 % (*p-ция* 8). Этот анион является одновременно и восстановителем, и источником газа **E**, что нашло применение в синтезе носителя метастабильного изотопа ^{99m}Tc для радиофармацевтики – комплекса $[Tc(E)_3(H_2O)_3]^+$ из пертехнат-аниона в мягких условиях (*p-ция* 9).

- **4.** Приведите структурные формулы веществ **G** и **H**, а также аниона **I**, ответ подтвердите расчётом.
- **5.** Напишите уравнения *р-ций 5–9* (*р-ции 8* и *9* запишите в ионном виде).

Задача 10-3

Определение селена

Определение содержания элементов в реальных объектах (рудах, шламах, продуктах реакций) — рутинная задача аналитической химии. Для её решения в случае селена применяют два основных титриметрических метода: тиосульфатный и иодометрический. В дальнейших описаниях методик будем считать, что селен присутствует в анализируемом растворе в виде селенистой кислоты (H_2SeO_3).

Тиосульфатный метод заключается в обработке раствора 1, содержащего селенистую кислоту, избытком тиосульфата натрия в солянокислой среде. При этом образуется раствор, содержащий равные количества натриевых солей **А** и **Б** (*p-ция* 3). Для предотвращения побочной *p-ции* 4 рекомендуется поддерживать среду раствора слабокислой, а температуру около 0°С. Затем раствор, содержащий непрореагировавший тиосульфат натрия, оттитровывают раствором иода, при этом протекает *p-ции* 2. Соль **Б** с иодом при этом не взаимодействует. Если на первой стадии тиосульфатного метода к 10.00 мл раствора 1 добавить 15.00 мл 0.1310 М Na₂S₂O₃, то на титрование избытка тиосульфата пойдёт 8.95 мл 0.03623 М раствора иода.

- **1**. Запишите уравнения *р-ций 1* и **2**. Определите формулу соли **A**.
- 2. Рассчитайте количество селенистой кислоты в 10 мл раствора 1.
- 3. Сколько моль тиосульфат-ионов вступает в *р-цию* 3 с 1 моль селенистой

кислоты? Ответ подтвердите расчетом.

- **4**. Определите формулу соли **Б**, если дополнительно известно, что атомов кислорода и серы в анионе **Б** столько же, сколько и в анионе **A**.
 - **5**. Запишите уравнения *р-ций 3* и *4*.

Помимо аниона соли **Б**, известны другие анионы такого же качественного состава. В таблице ниже дана некоторая информация об их строении.

	Количество связей	Количество типов		
	селен-сера ¹	атомов серы		
анион соли Б	2	2		
SeSO ₃ ²⁻	1	1		
$\mathrm{SeS}_2\mathrm{O}_6^{2-}$	2	1		
$\mathrm{Se_2S_2O_6^{2-}}$	2	1		
$\mathrm{SeS_3O_6^{2-}}$	2	3		

6. Изобразите структурные формулы всех анионов, представленных в таблице. Известно, ни один из них не содержит связей селен-кислород.

Задача 10-4

Превращения растворителя

Вещество **I** применяется в качестве растворителя в органическом синтезе, а продукт его взаимодействия с металлическим калием (вещество **II**) (*p-ция 1*) используется как сильное основание в неводных средах. Однако **II** нельзя использовать в воде из-за протекания *p-ции 2*. Известно, что в реакции 2.814 мл I ($\rho = 0.7887 \text{ г/см}^3$) с избытком металлического калия выделяется 336.0 мл водорода (при н.у.). Вещество **I** устойчиво к окислению подкисленным раствором перманганата калия, а плотность его паров не превышает плотности криптона.

1. Приведите структурные формулы веществ **I** и **II**. Ответ подтвердите расчётами.

_

¹ Указано число связей между атомами без учета кратности связей.

2. Напишите уравнения реакций 1 и 2.

При нагревании смеси вещества І с концентрированной серной кислотой выделяется газообразное при н.у. вещество ІІІ. В условиях этой реакции также III может происходить алкилирование промежуточно образующимся карбокатионом, приводящее к получению изомерных соединений IV и V, отличающихся положением двойной связи. Окисление IV подкисленным раствором перманганата калия (р-ция 3) протекает с образованием двух веществ: широко используемого растворителя VI (C_3H_6O) и одноосновной кислоты VII. Известно, что на титрование аликвоты (10.0 мл) водного раствора, содержащего 3.00 г VII в общем объёме раствора 50.0 мл, необходимо затратить 19.6 мл 0.300 M раствора NaOH (*p-ция 4*). Окисление изомерного соединения V в тех же условиях (р-ция 5) приводит к выделению углекислого газа и образованию соединения VIII. Гидрирование IV и V на медно-хромовом катализаторе приводит к образованию вещества ІХ, используемого в качестве присадки к топливу для понижения вероятности его детонации во время работы двигателей внутреннего сгорания.

- **3.** Определите структурные формулы веществ $\mathbf{III} \mathbf{IX}$. Приведите тривиальное название вещества \mathbf{IX} . Сколько изомерных монохлорпроизводных оно может образовать?
 - **4.** Напишите уравнения реакций 3-5.

Задача 10-5

Тиокарбоновые кислоты

Карбоновые кислоты – не единственный класс органических соединений, обладающих кислотными свойствами. Существуют также тиокарбоновые кислоты, в которых один из атомов кислорода карбоксильной группы заменён атомом серы.

Общая формула тиокарбоновых кислот

Известно, что при 25 °C для уксусной кислоты р $K_a = 4.76$, а для тиоуксусной кислоты р $K_a = 3.33$.

1. Чем обусловлено такое различие в кислотных свойствах?

Химик Колбочкин отбирал для своих опытов уксусную кислоту концентрацией 0.02 моль/л, но раствор в банке кончился, и он пошёл за другой. Порывшись в шкафу, он нашёл банку с похожей формулой и долил к уже отобранному раствору. Только после этого он понял, что это была не уксусная, а тиоуксусная кислота той же концентрации. Он измерил рН полученного раствора и получил значение 3.0.

2. Помогите химику и найдите исходные концентрации уксусной и тиоуксусной кислот в полученном растворе, а также равновесные концентрации их диссоциированных и недиссоциированных форм (и уксусной, и тиоуксусной).

Рассмотрим некоторые методы синтеза тиокарбоновых кислот на примере тиобензойной кислоты:

Известно, что:

- А является кислой солью, а массовая доля её аниона равна 45.83 %;
- В состав соединений В и С входит три химических элемента;
- 1 моль соединения C способен конвертировать 2 моль бензойной кислоты, а в самом соединении $\omega(S) = 20.25 \%$.

- **3.** а) Расшифруйте схему: напишите формулы **A**, **B** и **C**, для **B** приведите структурную формулу.
- б) Как получают соединение **В**? Приведите уравнение реакции, укажите условия её проведения.
- в) Почему нежелательно введение в реакцию с бензойной кислотой избытка С? Приведите уравнение реакции.

Известно, что тиокарбоновые кислоты в недиссоциированном состоянии существуют в виде двух таутомерных форм: тиольной и тионовой.

$$\stackrel{\text{S}}{\downarrow}_{\text{CH}} \rightarrow \stackrel{\text{O}}{\downarrow}_{\text{SH}}$$

Равновесие таутомеризации

В таблице приведены энергии связей в тиокарбоксильном фрагменте.

Связь	C=S	C–S	C=O	C-O	H–S	Н–О
Энергия связи, кДж/моль	573	273	799	358	363	459

- 4. а) Какая форма называется тиольной, а какая тионовой?
- б) Считая, что энергии связей углеродного скелета не меняются в процессе таутомеризации, оцените энтальпию данного процесса, если известно, что энергия делокализации (сопряжения) в исходном соединении на 22 кДж/моль больше, чем в продукте.
- в) Оцените константу равновесия процесса таутомеризации и соотношение таутомерных форм при 25 °C. Считайте, что изменение энтропии в реакции незначительно.

Справочная информация:

$$pK = -\lg K$$

$$K = e^{\frac{-\Delta G^{\circ}}{RT}}$$

$$\Delta G = \Delta H - T\Delta S$$

Одиннадцатый класс

Задача 11-1

Одинаковые, но разные

Порошки металлов **X**, **Y** и **Z**, принадлежащих к одной группе периодической системы Д. И. Менделеева, поместили в тигли со смесью гидроксида и хлората калия, затем нагрели (*p-ции* 1, в решении достаточно привести только уравнение реакции с **X**). При этом образовались вещества одинакового стехиометрического состава, отличающиеся только природой металла. После охлаждения полученных расплавов их растворили в минимальном количестве воды и подкислили раствором серной кислоты. При этом в каждом из трех полученных растворов выпали осадки оранжевого (**A**), жёлтого (**B**) и белого (**C**) цветов, соответственно (*p-ции* 2-4).

Вещества **В** и **С** растворяются в избытке раствора гидроксида натрия (*p-ции* **5**, **6**). Вещество **A** растворимо в воде и этот раствор окрашивает пламя в фиолетовый цвет. При добавлении гидроксида натрия окраска этого раствора меняется на жёлтую (*p-ция* **7**).

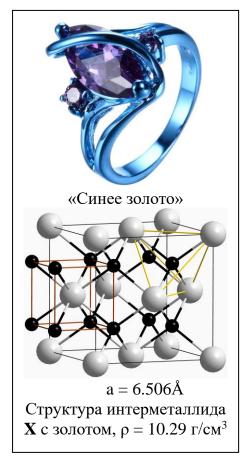
При хлорировании металлов **X**, **Y** и **Z** образуются соединения различного состава. В частности, при хлорировании **X** образуется фиолетовое вещество **D** (*p-ция* **8**), нерастворимое в воде, однако оно растворяется в присутствии следовых количеств хлорида олова (II) с образованием зелёного раствора. При упаривании из этого раствора можно выделить вещество **E** (ω (**X**) = 19.5 %). При длительном хранении водного раствора **E** его цвет изменяется.

При хлорировании **Y** образуется темно-фиолетовые кристаллы, которые гидролизуются водой с образованием **B** (*p-ция* **9**). Из раствора **B** в NаОН при небольшом подкислении (pH \sim 6.5) можно выделить бесцветные кристаллы **F**, которые при нагревании до 400 °C на воздухе теряют 13.09 % массы (ω (**Y**) = 70.94 %, после прокаливания). Нагревание **F** при 600 °C в токе водорода приводит к образованию вещества **G** с металлической проводимостью

и металлическим блеском (*p-ция* **10**). Из 1.0000 г **F** образуется 0.8417 г **G**.

В полученном хлориде металл **Z** проявляет ту же степень окисления, что и в соединении **H** светло-зелёного цвета ($\omega(\mathbf{Z}) = 29.50 \,\%$, $\omega(N) = 8.61 \,\%$), которое образуется при взаимодействии **C** с иодидом аммония в концентрированной соляной кислоте (**p-ция 11**), и выделяется в осадок при насыщении охлажденного раствора газообразным хлороводородом.

Вопросы:


- 1. Определите элементы X, Y, Z и неизвестные вещества A H, ответ обоснуйте. Состав E, F, G и H подтвердите расчётом.
- 2. Запишите уравнения реакций (1 11).
- 3. Объясните изменение окраски при растворении **D** и хранении раствора **E**.

Задача 11-2

Металлические красители для золота

Простые вещества X и Y, состоящие из атомов элементов одной группы Периодической системы, представляют собой мягкие металлы серебристо-белого цвета. Металл \mathbf{Y} является третьим элементом по распространённости в земной коре. Металлы Х и \mathbf{Y} образуют золотом изоструктурные интерметаллиды голубоватого И пурпурного цветов соответственно.

На воздухе \mathbf{X} покрывается оксидной плёнкой, а при сильном нагревании начинает гореть сине-фиолетовым пламенем с образованием вещества \mathbf{A} (*p-ция 1*). \mathbf{X} хорошо растворяется в соляной и азотной (60 %-ной)

кислотах (*р-ции 2 и 3*) с образованием **В** и **С** соответственно. Добавление водного раствора аммиака к водному раствору **С** приводит к выпадению белого осадка **D** (*р-ция 4*), который при добавлении избытка разбавленного раствора гидроксида калия не растворяется. Из водного раствора **В** при упаривании можно выделить кристаллы **Е**. Из водного раствора 0.073 г **Е** при добавлении избытка нитрата серебра выпадает 0.107 г осадка (*р-ция 5*). Металл **Х** не растворяется в водных растворах щелочей, а **Y** – наоборот, растворяется хорошо и в водных растворах щелочей (*р-ция 6*), и в их расплавах (*р-ция 7*).

Если смешать водные растворы соли ${\bf B}$ и ацетата натрия и пропустить ток сероводорода через полученный раствор, то образуется осадок бинарного соединения ${\bf F}$ жёлтого цвета (${\it p-ция}~8$). Если к раствору соли ${\bf Y}$ добавить ацетат натрия и нагреть, то происходит помутнение раствора, а при пропускании сероводорода через полученную взвесь никаких изменений не происходит.

- 1. Определите металлы X, Y и состав «синего золота».
- **2.** Установите вещества A F, где возможно, ответ подтвердите расчётом.
- **3.** Напишите уравнения реакций 1-8. Предположите, зачем в *p-ции* 8 используют ацетат натрия.
- **4.** За счёт чего мутнеет раствор соли **Y** при добавлении **E**? Ответ поясните уравнениями реакций.

Задача 11-3

Спиртов много не бывает?

Органическое соединение **X** обработали разбавленной серной кислотой. Полученные в этой реакции органические продукты отогнали, после чего обработали их алюмогидридом лития и затем вновь разбавленной серной кислотой. В результате в качестве единственных органических продуктов были получены три одноатомных первичных спирта **A**, **B** и **C** в соотношении 1 : 1 : 2, не содержащие других функциональных групп. Если изменить порядок

проведения реакции, то есть вначале обработать \mathbf{X} алюмогидридом лития, а затем разбавленной серной кислотой, то образуется уже только два из трёх вышеописанных спиртов и вещество \mathbf{D} . Обработка же \mathbf{X} исключительно разбавленной серной кислотой приводит к образованию тех же двух спиртов и соединений \mathbf{E} и \mathbf{F} , из которых \mathbf{E} имеет меньшую молярную массу. Те же два спирта (наряду с веществом \mathbf{G}) образуются и при нагревании смеси \mathbf{E} и \mathbf{F} с водным раствором гидроксида натрия с последующим добавлением разбавленной серной кислоты. \mathbf{X} , напротив, с гидроксидом натрия не реагирует.

Известно, что при сжигании 1.00 г **X** образуется 1.00 мл воды и 1.21 л углекислого газа (26 °C, 1 атм).

- **1.** Установите брутто-формулу соединения **X**.
- **2.** Используя только приведённые выше данные, определите общее число возможных изомерных структур \mathbf{X} , удовлетворяющих условию задачи, и изобразите одну из них. Аргументируйте ваше решение.

Соединение \mathbf{D} в присутствии серной кислоты вступает в реакцию конденсации с образованием вещества \mathbf{H} , которое при гидрировании в жёстких условиях даёт спирт \mathbf{B} . При восстановлении алюмогидридом лития соединение \mathbf{D} превращается в спирт \mathbf{A} .

- **3.** Приведите структурные формулы соединений ${\bf A} {\bf H}$ и ${\bf X}$.
- **4.** Приведите структуры всех возможных продуктов, которые можно получить при действии серной кислоты на спирт ${\bf C}$.

Задача 11-4

Металлоорганика против ревматизма

Простое вещество \mathbf{X} жёлтого цвета, в виде сплавов с другими металлами, находит широкое применение в изготовлении ювелирных изделий, а также в производстве коронок и зубных протезов. Кроме того, соединения элемента \mathbf{X} используются в медицине для лечения ревматоидного артрита. Одним

из первых таких препаратов было вещество **Y**, выпускаемое под торговым названием «Миокризин». Ниже представлен один из возможных способов синтеза данного соединения.

Дополнительно известно, что вещества \mathbf{A} и \mathbf{D} имеют в своей структуре один цикл, а на стадии получения \mathbf{B} в эквимолярном количестве образуется соединение \mathbf{C} , не содержащее серу. Вещество \mathbf{F} (60.8 масс. % \mathbf{X}) получают взаимодействием продукта растворения \mathbf{X} в царской водке с иодидом калия, либо нагреванием смеси простых веществ при 393 °C в запаянной ампуле в течение 4 суток.

1. Определите элемент **X**. Приведите структурные формулы соединений $\mathbf{A} - \mathbf{E}$ и **Y**, а также брутто-формулу вещества **F**. Для описанных в задаче способов получения **F** напишите уравнения протекающих реакций.

Другим противоревматическим препаратом, содержащим элемент \mathbf{X} , является вещество \mathbf{Z} . Использование \mathbf{Z} приводит к меньшим побочным эффектам, хотя и несколько менее эффективно для лечения ревматоидного артрита. \mathbf{Z} можно получить из β -D-глюкопиранозы (одной из циклических форм D-глюкозы) по приведённой ниже схеме.

Вещество **K** (56.2 масс. % **X**) синтезируют взаимодействием продукта растворения **X** в царской водке с триэтилфосфином $P(C_2H_5)_3$. Также известно,

что при добавлении к \mathbf{Y} и \mathbf{Z} SnCl₂ наблюдается фиолетовое окрашивание за счёт образования наночастиц \mathbf{X} .

2. Изобразите структурные формулы соединений $\mathbf{G} - \mathbf{K}$.

Рекомендация: для изображения структур производных *D-глюкозы* используйте проекции Хеуорса, как сделано в условии. Обращайте внимание на конфигурацию хиральных центров.

Задача 11-5

Дегидратация в воде

Некоторые реакции в природе проходят в гидротермальном режиме (в жидкой воде при температуре больше 100 °С и давлении больше 1 атм). Оказалось, что реакции дегидратации спиртов могут проходить в жидкой воде в таких специфических условиях, что невозможно даже в присутствии катализаторов при нормальных условиях.

1. Какой фактор: энтальпийный или энтропийный объясняет протекание реакции дегидратации в водной среде при высоких температуре и давлении?

Для изучения реакции в гидротермальных условиях необходимо в первую очередь знать агрегатное состояние воды и давление насыщенного пара воды при данной температуре. Если жидкость при температуре T_1 имеет давление насыщенного пара p_1 , а при температуре $T_2 - p_2$, то связь между ними описывает уравнение Клаузиуса—Клапейрона:

$$\ln \frac{p_2}{p_1} = \frac{\Delta H}{R} \cdot \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

В этом уравнении ΔH — энтальпия испарения жидкости (для воды $\Delta H = 40.66$ кДж/моль). Известно, что температура кипения воды при давлении 1 атм составляет 100 °C.

Гидротермальную реакцию дегидратации циклогексанола изучали при температурах 200 – 270 °C в специальных толстостенных ампулах.

2. Какое максимальное давление (в атм) должна выдерживать ампула

для работы с водными растворами в этом диапазоне температур? Считайте, что в газовой фазе присутствует только вода.

3. Какова максимальная температура, при которой можно работать с ампулой, выдерживающей давление 50 атм? Считайте, что в газовой фазе присутствует только вода.

Кроме того, для кинетических экспериментов, в которых необходимо знать начальную концентрацию реагирующего спирта, нужно учитывать изменение объема раствора при нагревании. В цилиндрическую ампулу при комнатной температуре поместили порцию раствора циклогексанола с концентрацией 0.20 М так, что высота столба раствора в ампуле составила 6 см. После того, как ампулу запаяли и нагрели до 250 °C, высота столба раствора в ампуле до начала реакции оказалась равной 7.8 см. Внутренний радиус ампулы равен 1.0 мм, высота ампулы — 11 см.

4. Определите массу испарившейся воды в ампуле и концентрацию спирта в нагретом растворе, если давление насыщенного пара воды над нагретым раствором при этой температуре равно 43 атм. Считайте, что количеством циклогексанола в газовой фазе можно пренебречь.

После нагрева до температуры 250 °C в ампуле происходит обратимая реакция дегидратации циклогексанола (**A**) с образованием циклогексена (**B**): $\mathbf{A} \rightleftharpoons \mathbf{B}$. Концентрация \mathbf{A} в этой реакции зависит от времени следующим образом: $[\mathbf{A}] - [\mathbf{A}]_{\infty} = ([\mathbf{A}]_0 - [\mathbf{A}]_{\infty}) \cdot e^{-(k_1 + k_{-1})t}$

где $[A]_0$ — начальная концентрация A, [A] — концентрация A в момент времени t, $[A]_\infty$ — равновесная концентрация A в растворе, k_1 и k_{-1} — константы скорости прямой и обратной реакции.

Кинетические измерения позволили определить константу скорости прямой реакции: $k_1 = 0.172 \text{ q}^{-1}$. Известно также, что концентрация спирта после установления равновесия в описанном опыте была в 8.24 раз меньше начальной.

5. За какое время в условиях опыта разложится 50 % спирта?